Low Rank Approximation using Error Correcting Coding Matrices
نویسندگان
چکیده
Low-rank matrix approximation is an integral component of tools such as principal component analysis (PCA), as well as is an important instrument used in applications like web search, text mining and computer vision, e.g., face recognition. Recently, randomized algorithms were proposed to effectively construct low rank approximations of large matrices. In this paper, we show how matrices from error correcting codes can be used to find such low rank approximations. The benefits of using these code matrices are the following: (i) They are easy to generate and they reduce randomness significantly. (ii) Code matrices have low coherence and have a better chance of preserving the geometry of an entire subspace of vectors; (iii) Unlike Fourier transforms or Hadamard matrices, which require sampling O(k log k) columns for a rank-k approximation, the log factor is not necessary in the case of code matrices. (iv) Under certain conditions, the approximation errors can be better and the singular values obtained can be more accurate, than those obtained using Gaussian random matrices and other structured random matrices.
منابع مشابه
Dynamical Low-Rank Approximation
For the low rank approximation of time-dependent data matrices and of solutions to matrix differential equations, an increment-based computational approach is proposed and analyzed. In this method, the derivative is projected onto the tangent space of the manifold of rank-r matrices at the current approximation. With an appropriate decomposition of rank-r matrices and their tangent matrices, th...
متن کاملUsing Low-Rank Ensemble Kalman Filters for Data Assimilation with High Dimensional Imperfect Models
Low-rank square-root Kalman filters were developed for the efficient estimation of the state of high dimensional dynamical systems. These filters avoid the huge computational burden of the Kalman filter by approximating the filter’s error covariance matrices by low-rank matrices. Accounting for model errors with these filters would cancel the benefits of the low-rank approximation as the insert...
متن کاملAdaptive Variable-Rank Approximation of General Dense Matrices
In order to handle large dense matrices arising in the context of integral equations efficiently, panel-clustering approaches (like the popular multipole expansion method) have proven to be very useful. These techniques split the matrix into blocks, approximate the kernel function on each block by a degenerate expansion, and discretize this expansion in order to find an efficient low-rank appro...
متن کاملAdaptive Variable - Rank Approximation of General Dense Matrices Steffen
In order to handle large dense matrices arising in the context of integral equations efficiently, panel-clustering approaches (like the popular multipole expansion method) have proven to be very useful. These techniques split the matrix into blocks, approximate the kernel function on each block by a degenerate expansion, and discretize this expansion in order to find an efficient low-rank appro...
متن کاملHow Much Does a Matrix of Rank k Weigh?
Matrices with very few nonzero entries cannot have large rank. On the other hand matrices without any zero entries can have rank as low as 1. These simple observations lead us to our main question. For matrices over finite fields, what is the relationship between the rank of a matrix and the number of nonzero entries in the matrix? This question motivated a summer research project collaboration...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015